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A Survey of Cluster Based Multi-Processor 
system design with IP-Cores 
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Abstract— This project aims to design a cluster-based multiprocessor system-on-chip (MPSoC) combines of 
hybrid interconnection composed of both bus based and network on chip (NOC) architecture. Two or more 
microprocessors working together to perform one or more related tasks using a shared memory is commonly 
referred to as a multiprocessor system. NoC is used to form a network to pass the message packets more 
efficiently between the source and destination and to provide additional communication resources so that 
multiple paths can be operated simultaneously. High performance is achieved by efficient implementation of 
hardware and software. It is done by fine tuning MPSoC architecture in the early stage of the design process. 
This project uses the FPGA device to prototype the cluster-based MPSoC. This paper proposes a hierarchical 
architecture consisting of SMP clustered nodes, each of which is structured by more than one baseline cores 
through centrally-shared memory and, some parallel applications with different characteristic of parallelism, 
functionality and communication pattern are designed and presented in this work. In this work a pure VHDL 
design, integrated with some intellectual property (IP) blocks. This project accounts for the highest throughput 
ratio. 

Index Terms — MPSoC, Cluster, IP Cores, NoC. 

——————————      —————————— 

1 INTRODUCTION                                                                     

ny system that incorporates two or more microproces-
sors working together to perform one or more related 
tasks is commonly referred to as a multiprocessor sys-

tem. In a multiprocessing system, all CPUs may be equal, 
or some may be reserved for special purposes. A combina-
tion of hardware and operating-system software design 
considerations determines the symmetry in a given system. 
For example, hardware or software considerations may 
require that only one CPU respond to all hardware inter-
rupts, whereas all other work in the system may be distri-
buted equally among CPUs; or execution of kernel-mode 
code may be restricted to only one processor (either a spe-
cific processor, or only one processor at a time), whereas 
user-mode code may be executed in any combination of 
processors. Multiprocessing systems are often easier to de-
sign if such restrictions are imposed, but they tend to be 
less efficient than systems in which all CPUs are utilized. 
Systems that treat all CPUs equally are called symmetric 
multiprocessing (SMP) systems. Because of the flexibility of 
SMP and because of its cost being relatively low, this archi-
tecture has become the standard for mainstream multipro-
cessing. 
 
 
 
 
 
 
 
 
 
 
 

 

       Multitasking operating systems can run processes on 
any CPU in a SMP system because each processor has the 
same view of the machine. In systems where all CPUs are 
not equal, system resources may be divided in a number of 
ways, including asymmetric multiprocessing (ASMP), non-
uniform memory access (NUMA) multiprocessing, and 
clustered multiprocessing In multiprocessing, the proces-
sors can be used to execute a single sequence of instruc-
tions in multiple contexts (single-instruction, multiple-data 
or SIMD, often used in vector processing), multiple se-
quences of instructions in a single context (multiple-
instruction, single-data or MISD, used for redundancy in 
fail-safe systems and sometimes applied to describe pipe-
lined processors or hyper-threading), or multiple se-
quences of instructions in multiple contexts (multiple-
instruction, multiple-data or MIMD). 
 
1.1 PROCESSOR COUPLING 

 Tightly-coupled multiprocessor systems contain 
multiple CPUs that are connected at the bus level. These 
CPUs may have access to a central shared memory (SMP or 
UMA), or may participate in a memory hierarchy with both 
local and shared memory (NUMA). The IBM p690 Regatta 
is an example of a high end SMP system. Intel Xeon proces-
sors dominated the multiprocessor market for business PCs 
and were the only x86 option until the release of AMD's 
Opteron range of processors in 2004. Both ranges of proces-
sors had their own onboard cache but provided access to 
shared memory; the Xeon processors via a common pipe 
and the Opteron processors via independent pathways to 
the system RAM. 

Chip multiprocessors, also known as multi-core 
computing, involves more than one processor placed on a 
single chip and can be thought of the most extreme form of 
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tightly-coupled multiprocessing. Mainframe systems with 
multiple processors are often tightly-coupled. 
 

Loosely-coupled multiprocessor systems (often re-
ferred to as clusters) are based on multiple standalone sin-
gle or dual processor commodity computers interconnected 
via a high speed communication system (Gigabit Ethernet 
is common). A Linux Beowulf cluster is an example of a 
loosely-coupled system. 
 

Tightly-coupled systems perform better and are 
physically smaller than loosely-coupled systems, but have 
historically required greater initial investments and may 
depreciate rapidly; nodes in a loosely-coupled system are 
usually inexpensive commodity computers and can be re-
cycled as independent machines upon retirement from the 
cluster. Power consumption is also a consideration. 
Tightly-coupled systems tend to be much more energy effi-
cient than clusters. This is because considerable economies 
can be realized by designing components to work together 
from the beginning in tightly-coupled systems, whereas 
loosely-coupled systems use components that were not 
necessarily intended specifically for use in such systems. 
  
1.2 EXISTING SYSTEM 

The multiprocessor System-on-Chip (MPSoC) is a 
system-on-a-chip (SoC) which uses multiple processors, 
usually targeted for embedded applications. It is used by 
platforms that contain multiple, usually heterogeneous, 
processing elements with specific functionalities reflecting 
the need of the expected application domain, a memory 
hierarchy and I/O components. All these components are 
linked to each other by an on-chip interconnect. These ar-
chitectures meet the performance needs of multimedia ap-
plications, telecommunication architectures, network secu-
rity and other application domains while limiting the pow-
er consumption through the use of specialized processing 
elements and architecture. 

The existing microprocessor system on chip archi-
tecture was based on either on bus based architecture or a 
network based architecture. Initially MPSoC architectures 
were building using system on a chip (SoC). It refers to in-
tegrating all components of a computer or other electronic 
system into a single integrated circuit (chip). It may contain 
digital, analog, mixed-signal, and often radio-frequency 
functions – all on a single chip substrate. These blocks are 
connected by either a proprietary or industry-standard bus 
such as the AMBA bus from ARM. DMA controllers route 
data directly between external interfaces and memory, by-
passing the processor core and thereby increasing the data 
throughput of the SoC. bus-based architectures ran out of 
performance due to the increase in number of cores used 
and, in addition, consumed far more energy than desirable 
to achieve the required on-chip communications and 
bandwidth. 
  This led to the development of a new architectures 
based on Network–on-Chip technique. The idea behind 
NoC is to build a network of routers to traverse the mes-

sage packets more freely and in faster fashion between 
nodes and to provide communications resources that helps 
in multiple channels to work parallely. Network-on-a-Chip 
was an approach to design the communication subsystem 
between IP cores in a System-on-a-Chip (SoC). NoCs can 
span synchronous and asynchronous clock domains or use 
unclocked asynchronous logic. NoC applies networking 
theory and methods to on-chip communication and brings 
notable improvements over conventional bus and crossbar 
interconnections. NoC improves the scalability of SoCs, 
and the power efficiency of complex SoCs compared to 
other designs.  However, the NoC architecture is very 
complex in nature for a programmer to create a new com-
munication model. 
 
1.3 LIMITATIONS OF EXISTING MODELS 
            The existing MPSoC architectures had many limita-
tions: 

 The soc based MPSoC architecture could not support 
many intellectual property cores and these type of 
architectures consumed more power. 

 The NoC based systems are complex to design and 
demands careful execution. 

 NoCs borrows concepts and techniques from the 
well-established domain of computer networking; it 
is impractical to reuse features of "classical" 
computer networks and symmetric multiprocessors. 

 
2. LITERATURE SURVEY 

 
1. The future of multiprocessor systems-on-chips by Wayne 
wolf, Dec 2004 

This paper surveys the state-of-the-art and pending 
challenges in MPSoC design. Standards in communica-
tions, multimedia, networking and other areas encourage 
the development of high-performance platforms that can 
support a range of implementations of the standard. A 
multiprocessor system-on-chip includes embedded proces-
sors, digital logic, and mixed-signal circuits combined into 
a heterogeneous multiprocessor. This mix of technologies 
creates a major challenge for MPSoC design teams. We will 
look at some existing MPSoC designs and then describe 
some hardware and software challenges for MPSoC de-
signers. 
 
2. HIBI-based Multiprocessor SoC on FPGA by Erno Sal-
minen, Ari Kulmala, and Timo D.Hamalainen, 2005  

FPGAs offer excellent platform for System-on- 
Chips consisting of Intellectual Property (IP) blocks. The 
problem is that IP blocks and their interconnections is often 
FPGA vendor dependent. The HIBI Network-on-Chip 
(NoC) scheme solves the problem by providing flexible 
interconnection network and IP block integration with 
Open Core Protocol (OCP) interface. Therefore, IP compo-
nents can be of any type: processors, hardware accelerators, 
communication interfaces, or memories. As a proof of con-
cept, a multiprocessor system with eight soft processor 
cores and HIBI is prototyped on FPGA. The whole system 
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uses 36402 logic elements, 2.9 Mbits of RAM, and operates 
on 78 MHz frequency on Altera Stratix 1S40, which is com-
parable to other FPGA multiprocessors. The most impor-
tant benefit is significant reduction of the design effort 
compared to system specific interconnection networks. HI-
BI also presents the first OCP compliant IP-block integra-
tion in FPGA. 

 
 
3.  Parallel Simulation of SystemC TLM 2.0 Compliant 
MPSoC on SMP Workstations byAline Mello, Isaac Maia, 
Alain Greiner, and Francois Pecheux June 2010. 

The simulation speed is a key issue in virtual pro-
totyping of Multi-Processors System on Chip (MPSoCs). 
The SystemCTLM2.0 (Transaction Level Modeling) ap-
proach accelerates the simulation by using Interface Me-
thod Calls (IMC) to implement the communications be-
tween hardware components. Another source of speedup 
can be exploited by parallel simulation. Multi-core 

workstations are becoming the mainstream, and SMP 
workstations will soon contain several tens of cores. The 

standard SystemC simulation engine uses a centralized 
scheduler that is clearly the bottleneck for a parallel simula-
tion. This paper has two main contributions. The first is a 
general modeling strategy for shared memory MPSoCs, 
called TLM-DT (Transaction Level Modeling with Distri-
buted Time). The second is a truly parallel simulation en-
gine, called SystemC-SMP. First experimental results on a 
40 processor MPSoC virtual prototype running on a dual-
core workstation demonstrate. 
 
 
2.1 CLUSTER ARCHITECTURE 

The proposed cluster-based MPSoC prototype 
makes use of processing cores. These cores may be either 
created or directly imported from any one of the core ven-
dors, available as a package along with the design suite 
processor cores are integrated, four processing clusters and 
a central node are created. This project consists of a hybrid 
interconnected architecture, in which the NoC and hie-
rarchy bus based architecture were employed for inter- and 
intra-clusters communication. 
 

 
The Architecture of Cluster-based MPSoC 

 
 

A single cluster 
 
The processing cores are integrated to form a cluster and 
these clusters communicated   with each other though a 
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shared memory (CSM). Inside the clusters, each intellectual 
property core has its own local memory for executing the 
local tasks. It accesses the inter-cluster network by the 
shared network interface (NI). 
 
 
2.2 CENTRAL NODE 
In this project work, the central node was a single-core SoC, 
It is the one through which external peripherals can be ac-
cessed. The central node is the main control unit of the en-
tire architecture, which is responsible for scheduling the 
parallel program. The computational data for various tasks 
are collected and handed over to on different clusters. The 
final output is also gathered by the central node gathering 
the executed results. 

The Architecture of Processing Cluster 
 
The processing cluster was based on Symmetric-
Multiprocessor-like (SMP) architecture. For obtaining bet-
ter performance of the cluster, hierarchial-bus based com-
munication architecture was used. It means that communi-
cation between the processing core and its local memory 
takes place through local bus.  Communication with other 
cores is done using the shared memory on shared bus. The 
shared memory is divided into regions, in which one re-
gion is dedicated for storing shared information, such as 
computational data for application, and other regions are 
used for exchanging data between clusters. The synchroni-
zation between processor cores is achieved by semaphore 
register file, which could indicate the state of every region 
in shared memory and  prevent core to modify the content 
when the region is locked. ie no other core can access the 
semaphore  register except the core who has initially used 
it. The usage of resources from the shared memory as well 
as accessing the shared memory is done by round robin 
scheduling. 
 
 

2.3 NETWORK CONNECTION 
The Clusters and central node were interconnected 

by an irregular network-on-chip, which was composed of 5 
routers as the nodes of network. As shown in Fig.3, every 
router has an identical network address, and connected by 
physical link consisting of two channels of different trans-
ferring   direction. In this NoC architecture, synchronized 
handshake protocol was adopted as the flow control 
scheme, and XY routing algorithm and Round-Robin arbi-
tration scheme was implemented too. The communication 
within NoC was based on message passing among the dif-
ferent network nodes. In this design, the data packets of 
transferring are organized in a standard format. Each pack-
et is rapid transmission, and each transmission contained 
two bits for packets framing and 32 bits for data. 

 
The Architecture of Interconnection Network 

 
3. SYSTEM ON A CHIP 

 
                   System-on-a-chip or system on chip (SoC or 
SOC) refers to integrating all components of a computer or 
other electronic system into a single integrated circuit 
(chip). It may contain digital, analog, mixed-signal, and 
often radio-frequency functions – all on a single chip sub-
strate. A typical application is in the area of embedded sys-
tems. 
 
3.1 OVERVIEW OF SOC 

Chip designs have for the last 20 years design ele-
ments. In an ASIC style flow, involving RTL logic synthesis 
and automated standard cell place and route, the reuse ab-
straction has been at the basic cell level, where a cell 
represents a few gates of complexity modules produced by 
generators or by hand, such as memories etc. has been 
common. 

SoC design has involved the reuse of more com-
plex elements at higher levels of abstraction. Block-based 
design, which involves partitioning, designing and assem-
bling SoCs using a hierarchical block-based approach, has 
used the intellectual property (IP) block as the basic reusa-
ble element. This might be an interface function such as a 
PCI or 1394 bus interface block; an MPEG2 or MP3 decod-
er; an implementation of data encryption or decryption 
such as a Digital Encryption Standard (DES) block, or some 
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complex function. 
                                Recently, the platform-based design ap-
proach to SoC designs has emerged. This approach arose in 
consumer application such as wireless handsets and set-top 
boxes. Elaborating on concepts presented in, we can define 
a platform as a co-ordinated family of hardware-software 
architectures, which satisfy a set of architectural con-
straints, imposed to allow the reuse of hardware and soft-
ware components. We call this a ―system platform‖. On a 
more pragmatic basis, platform are collection of HW and 
SW IP blocks together with an on-chip communications 
architecture (on-chips buses, bridges, etc.) which usually 
include at least one processor, real-time operating system 
(RTOS), peripheral interface blocks, possible accelerating 
hardware blocks for specialized functions, middleware, 
and the option to customize the platform for specific appli-
cations through drawing HW and SW IP blocks from libra-
ries. Recent work in highly programmable platform, con-
sisting of reconfigurable logic and fixed processor cores, 
has focused attention on embedded SW issues. 

Essentially, there are only a limited number of fun-
damentally ―good‖ design solutions to the problems posed 
by a particular application area. An application captures 
one or several related ―good‖ architectures, which are op-
tional for an application domain, and allows their effective 
reuse in a low-risk manner with rapid time-to-market. 
From the base platform, a number of derivative SoC de-
signs can be created rapidly and with far lower effort than 
with a block-based approach. Another fundamental ques-
tion is one of economics: who pays for what in creating a 
platform and its design infrastructure-the semiconductor 
provider, the IP house (especially a processor IP house) or 
the system company? The future answer is quite unclear, 
although to date most investment has come from semicon-
ductor and IP houses. 

Notable industrial examples of platform include 
Philips with its Nexperia Digital Processing platform de-
sign, Tality with Bluetooth designs, the BOPS voice-over-IP 
platform, the Metaflow Implosion SOC platform, Infineon 
M-Gold and TI OMAP wireless platforms, Parthus Medias-
tream, Palmchip CoreFrame, and reconfigurable platforms 
from Lucent (Agere), Improv systems, Triscend, Altera Ex-
calibur, Xilinx Vertex II, and Chameleon. 
Areas of importance include: 

 Design Process  

 System design 

 Hardware Chip Design  

 Functional Verification 

 Analogous / Mixed-signal 

 Infrastructure 
 
3.2 DESIGN PROCESS  

This encompasses a set of basic processes to reduce 
the risk of SoC design through the systematic collection 
and reuse of design experience. The processes include: 
Mechanisms for logging the design process, composing 
 Metrics for measuring the design and design progress. 

 Design sign-in points in the design flow. 
 Efficient capturing of designer decisions. 
  Storage and retrieval of relevant design experience 
  Certification to ensure completeness of design process. 
  Qualification to ensure the sufficiency of design 
decisions. 

  Process to use design experience for refining design 
flow. 

Such processes are important in order to increase 
confidence in taking a SoC design project; to ensure effec-
tive reuse and minimal design time; to ensure that design 
experience is logged, and used for systematic improvement 
of SoC design processes and methods; and to allow quick 
assessment of the feasibility of a particular SoC design 
project. Further details on some of these processes can be 
found. 
 
3.3 SYSTEM DESIGN 
    System-level design is fundamental to effective SoC de-
sign, and is particularly effective when married with plat-
form-based design concepts. The essential concept is to al-
low exploration of design derivatives at the system level of 
abstraction, rather than the more traditional RTL and C 
level. Functional-architecture co-design is a modern form 
of design space exploration that goes beyond hardware-
software co-design, to permit a wider range of design tra-
deoffs. When platforms are modeled at the system level 
with appropriate support for design space exploration, the 
creation of a derivative design and its validation can be 
done rapidly, with a high probability that the derivative 
design implementation will be successful 
 
3.4 HARDWARE CHIP DESIGN 

In the SoC era, for both blocked-based and plat-
form-based methods, the emphasis is on chip integration, 
not the individual customized design of each block. In the 
platform-based approach, it is typical to design the ―hard-
ware kernel‖ or ―foundation block‖ of the platform as a 
pre-laid-out, customized and characterized reusable ele-
ment which forms part of every derivative design. The 
fixed hardware kernel generally incorporates the proces-
sors, processor and system buses, memory interfaces, pos-
sibly some fixed portion of memory, and bridges to peri-
pheral bus. The platform-based design stage also usually 
fixes some part of the major SoC physical architectures: 
timing, test, power, etc. In the derivative design process for 
a platform-based design, the hardware kernal is assembled 
together with new, modified blocks from IP libraries to 
form the final hardware realization. .Of course, the blocks 
to be assembled need to be designed in the context of the 
overall SoC design plan and constraint. 
 
The major steps required in hardware design include: 

 Chip planning 
 Block design-using RTL synthesis and automated place 
and route Analogous/mixed-signal block design 

Analogous/mixed-signal block design 
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 Memory block design 
 Processor core design and assembly 
 Bus design  
 Library verification 
 Chip assembly 

The most important step is chip floor planning 
for both block-based and platform-based designs. The 
overall chip floor plan dictates the ease of block design 
and assembly, and imposes the major constraints on 
timing, power, test, etc. Development in hierarchical 
chip design tools offering advanced floor planning, es-
timation and assembly capabilities for block-based ap-
proaches are fundamental for SoC. 

  
3.5 FUNDAMENTAL VERIFICATION 

It has been repeatedly stated in recent years that 
complex IC designs split into approximately 30-40% design 
effort and 60-70% effort on verification. SoC design with its 
additional system-level complexity only compounds this 
problem. However a carefully chosen hierarchical verifica-
tion strategy involving modern tools can go a long way to 
ameliorate this problem. The maze of current and new veri-
fication approaches, going beyond simple simulation, can 
be overwhelming for users to understand. A good guide to 
SoC functional verification is found in. Here it will suffice 
to say that the emphasis in verification for SoC is a divide 
and conquer strategy that exploits the underlying hierar-
chical nature of the SoC design; and a transaction-based 
verification strategy that moves test bench stimulus, re-
sponse and checking up from the boolean signal level to 
more complex data types and system level transaction. 

When verification strategies map onto the underly-
ing SoC hierarchy, it is possible to verify designs block by 
block using a unit test concept, and then using selectively 
either the full block model, or a bus-functional model 
equivalent, within the overall SoC verification model. Test 
benches similarly can be built on a unit, block basis, and 
reapplied within the overall SoC model. This is made much 
easier if the test benches are architected to use the notion of 
high level transactions that are ―natural‖ for the SoC. For 
example, processor and peripheral blocks communicate 
within on-chip buses via various bus read/write and ac-
quire /release transaction, and it is easier to create test 
benches that describe tests at this level and ―protocol-
convert‖ them to bit-wise signal, than to write them all at 
the bit-wise level. In addition, this greatly facilities test 
bench reuse. 
    In the plat-form approach to SoC, reuse of test benches 
and verification models is a given, because the verification 
environment is first built for the platform, and then reused 
with little modification required for each derivative design. 
The only modifications needed are for any new IP blocks 
used, or for any blocks with modified functionality. Plat-
form-based design allows the maximun amount of verifica-
tion reuse when compared to a more custom, block-based 
SoC approach. 
 
 

3.6 ANALOGUE / MIXED-SIGNAL 
Although an increasing number of SoCs are mixed-

signal, the bulk of them today are still digital. i.e .big digital 
small analog designs containing primary digital devices 
with analog interfaces, the soc design approach is primarily 
an integration approach. AMS blocks must be designed for 
ease of integration onto a primarily digital device and chip 
assembly process needs to encompass methods for easy 
integration of these blocks. 
 
3.7 INFRASTRUCTURE 

Design information databases for IP blocks, plat-
forms and soc designs continue to evolve. Reuse of design 
requires a well architectured and stable IP infrastructure in 
which design blocks can be stored, searched for, found and 
reliably retrieved. But the database infrastructure is only a 
foundation or substructure. Of equal importance are a set 
of ip management process and procedures that allow effec-
tive use of the underlying database capabilities. Here effec-
tive characterization and rapid search for IP blocks and 
platforms is a key requirement. 
 

4. NETWORK ON CHIP 
Network-on-Chip or Network-on-a-Chip (NoC) is 

an approach to designing the communication subsystem 
between IP cores in a System-on-a-Chip (SoC). NoCs can 
span synchronous and asynchronous clock domains or use 
unclocked asynchronous logic. NoC applies networking 
theory and methods to on-chip communication and brings 
notable improvements over conventional bus and crossbar 
interconnections. NoC improves the scalability of SoCs, 
and the power efficiency of complex SoCs compared to 
other designs. 
 
4.1 Why NOC? 
• Efficient sharing of wires 
• Lower area / lower power / faster operation 
• Shorter design time, lower design effort 
• Scalability 
• Enable using custom circuits for communication 
 
4.2 NOC FLOW 
• Basic unit exchanged by end-points is the PACKET 
• Packets broken into many FLITs 

– ―flow control unit‖ 
– Typically # bits = # wires in each link (variations) 
– Typically contains some ID bits, needed by each 

switch along the path: 
• Head / body / tail 
• VC # 
• SL # 
• FLITs typically sent in a sequence, making a ―worm‖ go-
ing through wormhole. 
• Unlike live worms, FLITs of different packets may inter-
leave on same link 
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4.3 NOC ARCHITECTURE 
Several architectures have been proposed in the 

NoC literature. However, all NoCs have three fundamental 
building blocks, namely, switches (also called routers), 
Network Interfaces (NIs) (also called network adapters) 
and links. The NoC is instantiated by deploying a set of 
these components to form a topology and by configuring 
them in terms of buffer depth, etc. The backbone of the 
NoC consists of switches, whose main function is to route 
packets from sources to destinations. Some NoCs rely on 
specific topological connectivity, such as octagon or ring, to 
simplify the control logic, while others allow for arbitrary 
connectivity, providing more flexible matching to the tar-
get application. NoCs can be based on circuit or packet 
switching, or a mix of both; the former is aimed at provid-
ing hard QoS guarantees, while the latter optimizes the 
efficiency for the average case. When packet switching is 
chosen, switches provide buffering resources to lower con-
gestion and improve performance. They also handle flow 
control issues, and resolve conflicts among packets when 
they overlap in requesting access to the same physical 
links. Two of the most usual flow control protocols involve 
switch-to-switch communication and are retransmission 
based (i.e., packets are optimistically sent but a copy of 
them is also stored by the sender, and, if the receiver is 
busy, a feedback wire to request retransmission is raised) 
or credit-based (i.e., the receiver constantly informs the 
sender about its ability to accept data, and data are only 
sent when resources are certainly available). End-to-end 
flow control schemes, where peripheral NIs directly ex-
change flow control information with each other, are more 
rarely used because of their buffering requirements; the 
most common usage scenario involves NoCs that imple-
ment circuit switching. 
 

An NI is needed to connect each core to the NoC. 
NIs converts transaction requests/responses into packets 
and vice versa. Packets are then split into a sequence of 

FLow control unITS (FLITS) before transmission, to de-
crease the physical wire parallelism requirements. NIs is 
associated in NoCs to system masters and system slaves. 
Many current NoC solutions leverage static source routing, 
which means that dedicated NI Look-Up Tables (LUTs) 
specify the path that packets will follow in the network to 
reach their final destination. This type of routing minimizes 
the complexity of the routing logic in the NoC. As an alter-
native, routing can be performed within the topology itself, 
normally in an adaptive manner; however, performance 
advantages, in-order delivery and deadlock / livelock 
freedom are still issues to be studied in the latter case. 

In general, two different clock signals can be at-
tached to NIs: the first one drives the NI front-end, the side 
to which the external core is attached, and the second one 
drives the NI back-end, the internal NoC side. These clocks 
can, in general, be independent. This arrangement enables 
the NoC to run at a different (and potentially faster) clock 
than the attached cores, which is crucial to keep transaction 
latency low. In this work we employ the _pipes NoC li-
brary, as a state-of-the-art NoC solution that incorporates 
most of the features and effective architectural solutions 
that have been proposed in NoC designs; thus, it is repre-
sentative of various reasonable design points. The _pipes 
NoC is an example of a highly flexible library of compo-
nent blocks. 

The NoC can employ any of ACK / NACK (re-
transmission-based) or STALL / GO (credit based) flow 
control protocols, using output or input buffering, respec-
tively, for maximum efficiency. Links can be pipelined and 
no virtual channels are implemented, as this allows for a 
much leaner implementation. Deadlocks are avoided by 
construction in the definition of the routing tables included 
in the NIs. Two separate NIs are defined, i.e., an initiator 
one (for the master cores) and a target one (for the slave 
cores); a master/slave device requires an NI of each type to 
be attached to it. The interface among cores and NIs is 
point-to-point as defined by the Open Core Protocol (OCP) 
2.0 specification used as public interface of the NoC, guar-
anteeing maximum reusability for different cores and 
MPSoCs. _pipes NIs support two different clock signals, 
one for the OCP interface and another one for the _pipes 
internal interface; the _pipes clock frequency must be an 
integer multiple of the OCP one, to greatly simplify the 
hardware and performance overhead of clock synchroniza-
tion. Since each core can run at a different divider of the 
_pipes frequency, mixed-clock platforms are possible, 
which provides large flexibility. 
 
4.3.1 NOC Level 
• Circuits 

– Wires, Buffers, Routers, NI 
• Network 

– Topology, routing, flow-control. 
• Architecture 

– Everything is packets. 
– Traffic must be characterized. 
– NoC can extend to other chips. 
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• Support known traffic patterns 
– CPUs to Shared Cache. 
– Cache to external memory. 
– Special I/O traffic: Graphic, wireless / wired 

communication. 
• Support unexpected traffic patterns 
• Provide new services 

– Provide cache coherency. 
– Manage the shared cache. 
– Schedule tasks / processes / threads. 
– Support OS. 
– Support other memory models. 

 
 

NOC ARCHITECTURE 
 

                                                    
5. IMPLEMENTATION 

 
The whole project is implemented in a reconfigur-

able hardware structure like FPGA and a softcore micro-
controller such as microblaze. 
 
5.1 FPGA  

A Field-Programmable Gate Array (FPGA) is an in-
tegrated circuit designed to be configured by the customer 
or designer after manufacturing—hence "field-
programmable". The FPGA configuration is generally 
specified using a hardware description language (HDL), 
similar to that used for an application-specific integrated 
circuit (ASIC) (circuit diagrams were previously used to 
specify the configuration, as they were for ASICs, but this 
is increasingly rare). FPGAs can be used to implement any 
logical function that an ASIC could perform.  
             FPGAs contain programmable logic components 
called "logic blocks", and a hierarchy of reconfigurable in-
terconnects that allow the blocks to be "wired together"—
somewhat like a one-chip programmable breadboard. 
Logic blocks can be configured to perform complex combi-
national functions, or merely simple logic gates like AND 
and XOR. In most FPGAs, the logic blocks also include 

memory elements, which may be simple flip-flops or more 
complete blocks of memory. 
              In addition to digital functions, some FPGAs have 
analog features. The most common analog feature is pro-
grammable slew rate and drive strength on each output 
pin, allowing the engineer to set slow rates on lightly 
loaded pins that would otherwise ring unacceptably, and 
to set stronger, faster rates on heavily loaded pins on high-
speed channels that would otherwise run too slow. An-
other relatively common analog feature is differential com-
parators on input pins designed to be connected to differ-
ential signaling channels. A few "mixed signal FPGAs" 
have integrated peripheral Analog-to-Digital Converters 
(ADCs) and Digital-to-Analog Converters (DACs) with 
analog signal conditioning blocks allowing them to operate 
as a system-on-a-chip. Such devices blur the line between 
an FPGA, which carries digital ones and zeros on its inter-
nal programmable interconnect fabric, and field-
programmable analog array (FPAA), which carries analog 
values on its internal programmable interconnect fabric. 

The FPGA used for this project is Spartan 3E. The 
Spartan-3E family architecture consists of five fundamental 
programmable functional elements: 
• Configurable Logic Blocks (CLBs) contain flexible Look-
Up Tables (LUTs) that implement logic plus storage ele-
ments used as flip-flops or latches. CLBs perform a wide 
variety of logical functions as well as store data. 
• Input/Output Blocks (IOBs) control the flow of data be-
tween the I/O pins and the internal logic of the device. 
Each IOB supports bidirectional data flow plus 3-state op-
eration. It supports a variety of signal standards, including 
four high-performance differential standards. Double Data-
Rate (DDR) registers are included. 
• Block RAM provides data storage in the form of 18-Kbit 
dual-port blocks. 
• Multiplier Blocks accept two 18-bit binary numbers as 
inputs and calculate the product. 
• Digital Clock Manager (DCM) Blocks provide self-
calibrating, fully digital solutions for distributing, delaying, 
multiplying, dividing, and phase-shifting clock signals. 
 

SPARTAN 3E ARCHITECTURE 
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5.2 MICROBLAZE 
 

 

The MicroBlaze™ embedded processor soft core is 
a reduced instruction set computer (RISC) optimized for 
implementation in Xilinx® Field Programmable Gate Ar-
rays (FPGAs). The MicroBlaze soft core processor is highly 
configurable, allowing you to select a specific set of fea-

tures required by your design.  

In addition to these fixed features, the MicroBlaze 

processor is parameterized to allow selective enabling of 

additional functionality. Older (deprecated) versions of 

MicroBlaze support a subset of the optional features de-

scribed in this manual. Only the latest (preferred) version 

of MicroBlaze (v7.10) supports all options.  

Thirty-two 32-bit general purpose registers, 32-bit 

instruction word with three operands and two addressing 

modes, 32-bit address bus. 
 
CONCLUSION 

The cluster based multiprocessor system on chip 
architecture can be designed using cores provided by the 
microblaze controller and spartan 3E kit. Some of the cores 
that are used are UART, FFT, FIR, Encoder, Multiplier, I2C 
CORE etc. 

The basic building block of this MPSOC design me-
thodology is the configurable, extensible microprocessor 
core, created by a processor generator that uses high-level 
specifications of application-domain requirements in the 
form of instruction-set descriptions or even examples of the 
application code to run to generate small, efficient, applica-
tion-specific, programmable microprocessors. Configurable 
processors can perform traditional microprocessor tasks 
quite efficiently. But because these configurable processors 
are able to incorporate the data paths, instructions, and 
register storage for an application’s own natural data types, 
they also support virtually all of the functions that chip 
designers have historically implemented as hard-wired 
logic. The introduction of configurable, extensible proces-
sors changes the SOC design equation. These processors 
can now deliver very high performance. The performance 

per gate, per square millimeter of silicon, per watt, or per 
clock delivered by these processors often rivals or exceeds 
the performance of hard-wired logic blocks that they re-
place. 
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